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About a Class of (n, m)−Goups

Janez Ušan

Abstract. In this paper (km, m)−groups, k ≥ 3, with one condition are
described.

1. Preliminaries

Definition 1.1 ([1]). Let n ≥ m + 1 and let (Q; A) be an (n, m)−groupoid
(A : Qn → Qm; n, m ∈ N). We say that (Q; A) is an (n, m)−group iff the
following statements hold:

(I) For every i, j ∈ {1, . . . , n − m + 1}, i < j, the following law holds

A(xi−1
1 , A(xi+n−1

i ), x2n−m
i+n ) = A(xj−1

1 , A(xj+n−1
j ), x2n−m

j+n )

[:< i, j > −associative law]1; and
(II) For every i ∈ {1, . . . , n−m + 1} and for every an

1 ∈ Q there is exactly one
xm

1 ∈ Qm such that the following equality holds

A(ai−1
1 , xm

1 , an−m
i ) = an

n−m+1.

See, also [3].

Definition 1.2 ([6]). Let n ≥ 2m and let (Q; A) be a (n, m)−groupoid. Let also
e be a mapping of the set Qn−2m into the set Qm. Then, we say that e is an
{1, n−m+1}−neutral operation of the (n, m)−groupoid (Q; A) iff for every
sequence an−2m

1 over Q and for every xm
1 ∈ Qm the following equalities hold

A(xm
1 , an−2m

1 , e(an−2m
1 )) = xm

1

and
A(e(an−2m

1 ), an−2m
1 , xm

1 ) = xm
1 .

Remark 1.1. For m = 1 e is an {1, n}−neutral operation of the n−groupoid
(Q; A) [5]. Cf. Chapter II in [9].

Proposition 1.1 ([6]). Let (Q; A) be an (n, m)−groupoid and let n ≥ 2m. Then
there is at most one {1, n − m + 1}−neutral operation of (Q; A).
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11) (Q; A) is an (n, m)−semigroup
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Proposition 1.2 ([6]). Every (n, m)−group (n ≥ 2m) has an {1, n−m+1}−ne-
utral operation.

See, also [8].

Proposition 1.3 ([8]). Let n ≥ 2m and let (Q; A) be an (n, m)−groupoid. Further
on, let the < 1, n−m+1 > −associative law holds in (Q; A) and for every an

1 ∈ Q

there is at least one xm
1 ∈ Qm and at least one ym

1 ∈ Q such that the following
equalities hold

A(an−m
1 , xm

1 ) = an
n−m+1

and

A(ym
1 , an−m

1 ) = an
n−m+1.

Then there are mappings e and −1, respectively, of the sets Qn−2m and Qn−m into
the set Qm such that the following laws hold in the algebra (Q; A,−1 , e):

A(e(an−2m
1 ), an−2m

1 , xm
1 ) = xm

1 ,

A(xm
1 , an−2m

1 , e(an−2m
1 )) = xm

1 ,

A((an−2m
1 , xm

1 )−1, an−2m
1 , xm

1 ) = e(an−2m
1 ),

A(xm
1 , an−2m

1 , (an−2m
1 , xm

1 )−1) = e(an−2m
1 ).

(Cf. 1.2-1.4)

2. Auxiliary proposition

Proposition 2.1 ([8]). Let n > m+1 and let (Q; A) be an (n, m)−groupoid. Also
let

(a) < 1, 2 >-associative law hold in (Q; A); and
(b) For every xm

1 , ym
1 , an−m

1 ∈ Q the following implication holds

A(xm
1 , an−m

1 ) = A(ym
1 , an−m

1 ) ⇒ xm
1 = ym

1 .

Then (Q; A) is an (n, m)−semigroup.

Proposition 2.2 ([3]). Let (Q; A) be an (n, m)−groupoid and n ≥ m + 2. Also,
let the following statements hold: 1) (Q; A) is an (n, m)−semigroup; 2) For every
an

1 ∈ Q there is exactly one xm
1 ∈ Qm such that the following equality holds

A(an−m
1 , xm

1 ) = an
n−m+1; and 3) For every an

1 ∈ Q there is exactly one ym
1 ∈ Qm

such that the following equality holds A(ym
1 , an−m

1 ) = an
n−m+1. Then (Q; A) is an

(n, m)−group.

Definition 2.1. Let (Q; B) be a (2m, m)−groupoid and m ≥ 2. Then: (α)
1
B

def
=

B; and (β) for every s ∈ N and for every x
(s+2)m
1 ∈ Q

s+1
B (x

(s+2)m
1 )

def
= B(

s

B(x
(s+1)m
1 ), x

(s+2)m
(s+1)m+1).
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Proposition 2.3. Let (Q; B) be a (2m, m)−semigroup, m ≥ 2 and s ∈ N . Then,

for every x
(s+2)m
1 ∈ Q and for every t ∈ {1, . . . , sm + 1} the following equality

holds
s+1
B (x

(s+2)m
1 ) =

s

B(xt−1
1 , B(xt+2m−1

t ), x
(s+2)m
t+2m ).

Sketch of the proof.

1) s = 1 : By Def. 1.1 and by Def. 2.3, we have

2
B(x3m

1 ) = B(xi−1
1 , B(xi+2m−1

i ), x3m
i+2m)

for every x3m
1 ∈ Q and for all i ∈ {1, . . . , m + 1}.

2) s = v : Let for every x
(s+2)m
1 ∈ Q and for all t ∈ {1, . . . , vm + 1} the

following equality holds

v+1
B (x

(s+2)m
1 ) =

v

B(xt−1
1 , B(xt+2m−1

t ), x
(v+2)m
t+2m ).

3) v → v + 1:

(v+1)+1

B (x
(v+3)m
1 )

(β)
= B(

v+1
B (x

(v+2)m
1 ), x

(v+3)m
(v+2)m+1)

2)
=

B(
v

B(xt−1
1 , B(xt+2m−1

t ), x
(v+2)m
t+2m ), x

(v+3)m
(v+2)m+1)

(

β)=

v+1
B (xt−1

1 , B(xt+2m−1
t ), x

(v+3)m
t+2m )

2)
=

v

B(xt−1
1 , B(B(xt+2m−1

t ), xt+3m−1
t+2m ), x

(v+3)m
t+3m )

1.1
=

v

B(xt−1
1 , B(xt+i−2

t , B(xt+i+2m−2
t+i−1 ), xt+3m−1

t+i+2m−1), x
(v+3)m
t+3m )

2)
=

v+1
B (xt−1

1 , xt+i−2
t , B(xt+i+2m−2

t+i−1 ), xt+3m−1
t+i+2m−1, x

(v+3)m
t+3m ) =

v+1
B (xt+i−2

1 , B(xt+i+2m−2
t+i−1 ), x

(v+3)m
t+i+2m−1).

�

By Def. 1.1, Def. 2.3 and by Prop. 2.4, we obtain:

Proposition 2.4. Let (Q; B) be a (2m, m)−semigroup, m ≥ 2 and (i, j) ∈ N2.

Then, for every x
(i+j+1)m
1 ∈ Q and for all t ∈ {1, . . . , im+1} the following equality

holds
i+j

B (x
(i+j+1)m
1 ) =

i

B(xt−1
1 ,

j

B(x
t+(j+1)m−1
t ), x

(i+j+1)m
t+(j+1)m).

By 1.3 and by 1.4, we have:

Proposition 2.5 ([2]). Let (Q; B) be an (n, m)−group and n = 2m. Then there
is exactly one em

1 ∈ Qm such that for all xm
1 ∈ Qm the following equalities hold

(n) B(xm
1 , em

1 ) = xm
1 and B(em

1 , xm
1 ) = xm

1 .

Remark 2.1. For m = 1, em
1 is a neutral element of the group (Q; B).
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Proposition 2.6 ([2]). Let (Q; B) be a (2m, m)−group, and let em
1 ∈ Qm satis-

fying (n) [from 2.6] for all xm
1 ∈ Qm. Then for all i ∈ {0, 1, . . . , m} and for every

xm
1 ∈ Qm the following equality holds

B(xi
1, e

m
1 , xm

i+1) = xm
1 .

Sketch of the proof. m > 1:

B(xi
1, e

m
1 , xm

i+1)
(n)
= B(em

1 , A(xi
1, e

m
1 , xm

i+1))

1.1(I)
= B(ei

1, B(em
i+1, x

i
1, e

m
1 ), xm

i+1)

(n)
= B(ei

1, e
m
i+1, x

i
1, x

m
i+1)

= B(em
1 , xm

1 )
(n)
= xm

1 .

�

Proposition 2.7 ([2]). Let (Q; B) be a (2m, m)−group, and let em
1 ∈ Qm satis-

fying (n) [from 2.6] for all xm
1 ∈ Qm. Then: e1 = e2 = . . . = em.

Sketch of the proof. m > 1:

B(em
2 , em

1 , e1)
2.7
= em

2 , e1 ⇒

B(em
2 , e1, e

m
2 , e1) = em

2 , e1
(n)
⇒

B(em
2 , e1, e

m
2 , e1) = B(em

2 , e1, e
m
1 )

1.1(II)
⇒ em

2 , e1 = em
1 ,

whence, we obtain e1 = e2 = . . . = em. �

See, also [4].

3. Results

Theorem 3.1. Let k > 2, m ≥ 2, n = k · m, (Q; A) (n, m)−group and e its
{1, n−m + 1}−neutral operation. Also let exist sequence an−2m

1 over Q such that
for all i ∈ {0, 1, . . . , 2m − 1}, and for every x2m

1 ∈ Q the following equality holds

(0) A(xi
1, a

n−2m
1 , x2m

i+1) = A(x2m
1 , an−2m

1 ).

Further on, let

(1) B(x2m
1 )

def
= A(xm

1 , an−2m
1 , x2m

m+1)

and

(2) cm
1

def
= A

( k

e(an−2m
1 )

)

for all x2m
1 ∈ Q. Then the following statements hold

(i) (Q; B) is a (2m, m)−group;
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(ii) For all xk·m
1 ∈ Q

A(xk·m
1 ) =

k

B(xk·m
1 , cm

1 );

and
(iii) For all j ∈ {0, . . . , m − 1} and for every xm

1 ∈ Q the following equality
holds

B(xj
1, c

m
1 , xm

j+1) = B(xm
1 , cm

1 ).

Proof. Firstly we prove that under the assumption the following statements hold:

1◦ For all x3m
1 ∈ Q the following equality holds

B(B(x2m
1 ), x3m

2m+1) = B(x1, B(x2m+1
2 ), x3m

2m+2).

2◦ For all b2m
1 ∈ Q there is exactly one xm

1 ∈ Qm such that the following
equality holds

B(xm
1 , bm

1 ) = b2m
m+1.

3◦ (Q; B) is a (2m, m)−semigroup.
4◦ For all b2m

1 ∈ Q there is exactly one ym
1 ∈ Qm such that the following

equality holds
B(bm

1 , ym
1 ) = b2m

m+1.

Sketch of the proof of 1◦:

B(B(x2m
1 ), x3m

2m+1)
(1)
= A(A(xm

1 , an−2m
1 , x2m

m+1), a
n−2m
1 , x3m

2m+1)
(0)
=

= A(A(xm
1 , an−2m

1 , x2m
m+1), x2m+1, a

n−2m
1 , x3m

2m+2)
1.1(I)
=

= A(x1, A(xm
2 , an−2m

1 , x2m
m+1, x2m+1), a

n−2m
1 , x3m

2m+2)
(0)(1)
=

= B(x1, B(x2m+1
2 ), x3m

2m+2).

Sketch of the proof of 2◦:

B(xm
1 , bm

1 ) = b2m
m+1

(1)
⇔ A(xm

1 , an−2m
1 , bm

1 ) = b2m
m+1,

whence, by Def. 1.1-(II), we obtain 2◦.
Sketch of the proof of 3◦: By 2◦ and by Prop. 2.1.
Sketch of the proof of 4◦:

B(bm
1 , xm

1 ) = b2m
m+1

(1)
⇔ A(bm

1 , an−2m
1 , ym

1 ) = b2m
m+1,

whence, by Def. 1.1-(II), we have 4◦.
The proof of (i): By 2◦, 3◦, 4◦ and by Prop.2.2.
Sketch of the proof of (ii) [to the case k = 4]:

A(xm
1 , ym

1 , zm
1 , um

1 )
1.4
= A(xm

1 , ym
1 , zm

1 , A(um
1 , an−2m

1 , e(an−2m
1 )))

1.1(I)
=

= A(xm
1 , ym

1 , A(zm
1 , um

1 , an−2m
1 ), e(an−2m

1 ))
(0)
=

= A(xm
1 , ym

1 , A(zm
1 , an−2m

1 , um
1 ), e(an−2m

1 ))
(1)
=
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= A(xm
1 , ym

1 , B(zm
1 , um

1 ), e(an−2m
1 ))

1.4
=

= A(xm
1 , ym

1 , A(B(zm
1 , um

1 ), an−2m
1 , e(an−2m

1 )), e(an−2m
1 ))

1.1(I)
=

= A(xm
1 , A(ym

1 , B(zm
1 , um

1 ), an−2m
1 ), e(an−2m

1 ), e(an−2m
1 ))

(0)
=

= A(xm
1 , A(ym

1 , an−2m
1 , B(zm

1 , um
1 )), e(an−2m

1 ), e(an−2m
1 ))

(1)
=

= A(xm
1 , B(ym

1 , B(zm
1 , um

1 )), e(an−2m
1 ), e(an−2m

1 ))
1.4
=

= A(xm
1 , A(B(ym

1 , B(zm
1 , um

1 )), an−2m
1 , e(an−2m

1 )), e(an−2m
1 ), e(an−2m

1 ))
1.1(I)
=

= A(A(xm
1 , B(ym

1 , B(zm
1 , um

1 )), an−2m
1 ), e(an−2m

1 ), e(an−2m
1 ), e(an−2m

1 ))
(0)
=

= A(A(xm
1 , an−2m

1 , B(ym
1 , B(zm

1 , um
1 ))), e(an−2m

1 ), e(an−2m
1 ), e(an−2m

1 ))
(1)
=

= A
(

B(xm
1 , B(ym

1 , B(zm
1 , um

1 )), e(an−2m
1 ),

2

e(an−2m
1 )

)

2.4
=

= A
( 3
B(xm

1 , ym
1 , zm

1 , um
1 )), A(e(an−2

1 ), an−2
1 , e(an−2m

1 )),
2

e(an−2m
1 )

)

(0)
=

= A
( 3
B(xm

1 , ym
1 , zm

1 , um
1 ), A(an−2m

1 , e(an−2m
1 ), e(an−2m

1 )),
2

e(an−2m
1 )

)

1.1(I)
=

= A

(

3
B(xm

1 , ym
1 , zm

1 , um
1 ), an−2m

1 , A
( 4

e(an−2m
1 )

)

)

(1)
=

= B

(

3
B(xm

1 , ym
1 , zm

1 , um
1 ), A

( 4

e(an−2m
1 )

)

)

(2)
=

= B(
3
B(xm

1 , ym
1 , zm

1 , um
1 ), cm

1 )
2.3
=

=
4
B(xm

1 , ym
1 , zm

1 , um
1 , cm

1 ).

Sketch of a part of the proof of (iii):
By (ii) and by

A(A(xk·m
1 ), x2km−m

k·m+1 ) = A(x1, A(xk·m+1
2 ), x2km−m

k·m+2 ),

we have

k

B(x1,
k

B(xk·m
2 , cm

1 , xk·m+1), x
2km−m
k·m+2 , cm

1 ) =
k

B(x1,
k

B(xk·m
2 , cm

1 ), x2km−m
k·m+2 , cm

1 ),

and by Def.1.1-(II), we have

k

B(xk·m
2 , cm

1 , xk·m+1) =
k

B(xk·m+1
2 , cm

1 ),

i.e., by Prop. 2.4,

k−1
B (x

(k−1)·m+1
2 , B(xk·m

(k−1)·m+2, c
m
1 , xk·m+1)) =

k−1
B (x

(k−1)·m+1
2 , B(xk·m+1

(k−1)·m+2, c
m
1 )).
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Finaly, hence we obtain

B(xk·m
(k−1)·m+2, c

m
1 , xk·m+1) = B(xk·m+1

(k−1)·m+2, c
m
1 ),

i.e., we obtain (iii) for j = m − 1. �

Theorem 3.2. Let m ≥ 2, (Q; B) be a (2m, m)−group, and let
m
e ∈ Qm its

neutral element (cf. Prop. 2.8). Also let cm
1 be an element of the set Qm such

that for every i ∈ {0, 1, . . . , m − 1} and for every xm
1 ∈ Qm the following equality

holds

(a) B(xi
1, c

m
1 , xm

i+1) = B(xm
1 , cm

1 )
(cf. Prop. 2.6 and Prop. 2.7). Further on, let k > 2 and

(b) A(xk·m
1 ) =

k

B(xk·m
1 , cm

1 )
for all xk·m

1 ∈ Q. Then (Q; A) is a (k · m, m)−group with condition:

(c) Exist sequence a
(k−2)·m
1 over Q such that for all j ∈ {0, . . . , 2m − 1} and

for every x2m
1 ∈ Q the following equality holds

A(xj
1, a

(k−2)·m
1 , x2m

j+1) = A(x2m
1 , a

(k−2)·m
1 ).

Proof. Firstly we prove that under the assumptions the following statements hold:
◦

1 For all x2km−m
1 ∈ Q the following equality holds

A(A(xk·m
1 ), x2km−m

k·m+1 ) = A(x1, A(xk·m+1
2 ), x2km−m

k·m+2 )

[ < 1, 2 > −associative law].
◦

2 For all b2km
1 ∈ Q there is exactly one xm

1 ∈ Qm such that the following
equality holds

A(xm
1 , bk·m−m

1 ) = bk·m
k·m−m+1.

◦

3 (Q; A) is a (km, m)−semigroup.
◦

4 For all b2km
1 ∈ Q there is exactly one ym

1 ∈ Qm such that the following
equality holds

A(bk·m−m
1 , ym

1 ) = bk·m
k·m−m+1.

◦

5 For all j ∈ {0, . . . , 2m − 1} and for every x2km
1 ∈ Q the following equality

holds

A(xj
1,

(k−3)·m
e , (cm

1 )−1, x2m
j+1) = A(x2m

1 ,
(k−3)·m

e , (cm
1 )−1),

where
(d) B((cm

1 )−1, cm
1 ) =

m
e [ cf. Prop. 1.5 and Prop. 2.8].

Sketch of the proof of
◦

1:

A(A(xk·m
1 ), x2km−m

k·m+1 )
(b)
=

k

B(
k

B(xk·m
1 , cm

1 ), x2km−m
k·m+1 , cm

1 )
2.5
=

=
k

B(x1,
k

B(xk·m
2 , cm

1 , xk·m+1), x
2km−m
k·m+2 , cm

1 )
2.4
=
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=
k

B(x1,
k−1
B (x

(k−1)·m+1
2 , B(xk·m

(k−1)·m+2, c
m
1 , xk·m+1)), x

2km−m
k·m+2 , cm

1 )
(a)
=

=
k

B(x1,
k−1
B (x

(k−1)·m+1
2 , B(xk·m+1

(k−1)·m+2, c
m
1 )), x2km−m

k·m+2 , cm
1 )

2.4
=

=
k

B(x1,
k

B(xk·m+1
2 , cm

1 ), x2km−m
k·m+2 , cm

1 )
(b)
=

= A(x1, A(xk·m+1
2 ), x2km−m

k·m+2 ).

Sketch of the proof of
◦

2:

A(xm
1 , b

(k−1)·m
1 ) = bk·m

(k−1)·m+1

(b)
⇔

k

B(xm
1 , b

(k−1)·m
1 , cm

1 ) = bk·m
(k−1)·m+1

2.5
⇔

B(xm
1 , (

k−1
B b

(k−1)·m
1 , cm

1 )) = bk·m
(k−1)·m+1.

Sketch of the proof of
◦

3: By
◦

1,
◦

2 and by Prop. 2.1.

Sketch of the proof of
◦

4:

A(b
(k−1)·m
1 , ym

1 ) = bk·m
(k−1)·m+1

(b)
⇔

k

B(b
(k−1)·m
1 , ym

1 , cm
1 ) = bk·m

(k−1)·m+1
2.4
⇔

k−1
B (b

(k−1)·m
1 , B(ym

1 , cm
1 )) = bk·m

(k−1)·m+1

(a)i=0
⇐⇒

k−1
B (b

(k−1)·m
1 , B(cm

1 , ym
1 )) = bk·m

(k−1)·m+1
2.4
⇐⇒

k

B(b
(k−1)·m
1 , cm

1 , ym
1 ) = bk·m

(k−1)·m+1
2.3
⇐⇒ B(

k−1
B (b

(k−1)·m
1 , cm

1 ), ym
1 ) = bk·m

(k−1)·m+1.

Sketch of a part of the proof of
◦

5 [to case k = 4]:

A(x2m
1 ,

m
e, (cm

1 )−1)
(b)
=

4
B(x2m

1 ,
m
e, (cm

1 )−1, cm
1 )

2.4
=

=
3
B(x2m

1 ,
m
e, B((cm

1 )−1, cm
1 ))

(d)
=

3
B(x2m

1 ,
m
e,

m
e)

2.4
=

=
2
B(xm

1 , B(x2m
m+1,

m
e),

m
e)

(a)
=

2
B(xm

1 , B(x2m−1
m+1 ,

m
e, x2m),

m
e)

2.4
=

=
2
B(x2m−1

1 , e, B(
m−1
e , x2m,

m
e))

(a)
=

2
B(x2m−1

1 , e, B(
m−1
e ,

m
e, x2m))

2.4
=

=
3
B(x2m−1

1 ,
m
e,

m
e, x2m)

(d)
=

3
B(x2m−1

1 ,
m
e, B((cm

1 )−1, cm
1 ), x2m) = 2

=
3
B(x2m−1

1 ,
m
e, B((cm

1 , cm
1 ), x2m)

2.4
=

3
B(x2m−1

1 ,
m
e, c1, B((cm

2 , cm
1 , x2m))

(a)
=

=
3
B(x2m−1

1 ,
m
e, c1, B(cm

2 , x2m, cm
1 ))

2.4
=

4
B(x2m−1

1 ,
m
e, cm

1 , cm
2 , x2m, cm

1 ) =

=
4
B(x2m−1

1 ,
m
e, (cm

1 )−1, x2m, cm
1 )

(b)
= A(x2m−1

1 ,
m
e, (cm

1 )−1, x2m).

2cm

1 = (cm

1 )−1
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By
◦

2 −
◦

4, Prop. 2.2 and by
◦

5, we obtain (Q; A) is a (km, m)−group with
condition (c). �

Remark 3.1. a) In [3] the following proposition is proved. Let (Q; A) be a
(k · m, m)−group, m ≥ 2, k ≥ 3 and let

A(xm
1 , x2m

m+1, . . . , x
k·m
(k−1)·m+1)

def
= A(xk·m

1 )

for all xk·m
1 ∈ Q. Then there exist binary group (Qm,B), an element

cm
1 ∈ Qm and an automorphism ϕ of this group, such that for each

xm
1 , x2m

m+1, . . . , x
k·m
(k−1)·m+1 ∈ Qm

A(xm
1 , x2m

m+1, . . . , x
k·m
(k−1)·m+1) =

k

B(xm
1 , ϕ(x2m

m+1), . . . , ϕ
k−1(xk·m

(k−1)·m+1), c
m
1 ),

ϕ(cm
1 ) = cm

1

and

B(ϕk−1(xm
1 ), cm

1 ) = B(cm
1 , xm

1 ).

b) B, ϕ and cm
1 from a), according to [7], are defined in the following way

B(xm
1 , ym

1 )
def
= A(xm

1 , a
(k−2)·m
1 , ym

1 ),

ϕ(xm
1 )

def
= A(e(a

(k−2)·m
1 ), xm

1 , a
(k−2)·m
1 )

and

cm
1

def
= A

(

k

e(a
(k−2)·m
1 )

)

for all xm
1 , ym

1 ∈ Qm, where (Q; A) is a (k ·m, m)−group, e its {1, n−m+
1}−neutral operation and k ≥ 3. [ Cf. Th. 3.1-IV in [9]]

c) If condition (c) from Th. 3.2 in (Q; A) holds, then ϕ(xm
1 ) = xm

1 for all
xm

1 ∈ Qm.
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[8] J. Ušan, Note on (n, m)−groups, Math. Mor. 3(1999), 127–139.
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21000 Novi Sad

Serbia and Montenegro


